
Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

1

DETECTING RULE INCONSISTENCIES IN SYMBIOTIC SIMULATIONS

Catriona Kennedy

Volker Sorge

Georgios Theodoropoulos

School of Computer Science

University of Birmingham, UK

{C.M.Kennedy|V.Sorge|G.K.Theodoropoulos}@cs.bham.ac.uk

ABSTRACT

Simulation models are used to predict future or

hypothetical states of an observed system. To obtain

accurate simulation models one needs to ensure that

the data generated by the simulation is consistent

with the data obtained from the observed system. This

is a central issue in the area of symbiotic simulation

where there is an online feedback loop between the

system and its simulation. In this paper we use

association rule data mining in order to compare the

two data sets. This results in rule sets for both real

world and simulation data, which can then be

checked for inconsistencies. We present how we

formalise rules mined from different data sets in

propositional logic and how we employ a SAT solving

system to detect inconsistencies of different rule sets

in an incremental process, which gradually

incorporates rules mined during an ongoing

simulation. Once an inconsistency is detected we

extract the interfering simulation rules and use them

to refine the simulation model.

1 INTRODUCTION

In the physical sciences, symbiotic simulation (or

DDDAS, Dynamic Data Driven Application Systems)

is a method where data from a physical system is

absorbed into a simulation of the system in order to

continually adapt the model to the reality, if

necessary making changes to the assumptions on

which it is based (Darema, 2005). The simulation

predictions can in turn potentially be used to

determine the data to be absorbed and steer the

observed system. Symbiotic simulation can be used

to optimise management of real world systems in

areas such as commerce, communication, or

transportation by close interaction with the system

being observed and simulated.

One important aspect is to ensure that the simulation

models closely the real world system. As part of a

project which investigates the application of

symbiotic simulation to the social sciences: AIMSS-

Adaptive Intelligent Model-building for the Social

Sciences (Kennedy and Theodoropoulos (2006a),

Kennedy and Theodoropoulos (2006b), Kennedy

and Theodoropoulos (2005), Kennedy et al. (2007))

we have worked on a method to compare the data

obtained from the real world system with the data

generated by the simulation using a data mining

approach. For both data sets we apply association

rule mining (Agrawal and R. Srikan, 1994) to

extract association rules that describe dependencies

within the data. We explain this in section Sec. 2

The extracted rule sets can subsequently be checked

for inconsistencies between the simulation and the

real system. We use an encoding in propositional

logic for the association rule set and employ a

satisfiability solver to find inconsistencies. To

accommodate the continuous nature of the

simulation process we adopt an incremental process,

which gradually incorporates rules mined during the

ongoing simulation into the formalisation and

consistency checking. We present the details in

Sec. 3. Once an inconsistency is detected the

interfering simulation rules can be extracted and

used to support the refinement of the simulation

model. In Sec 4, we illustrate how our approach can

be applied in a simple case study from social

sciences.

2 SYMBIOTIC SIMULATION

The accuracy of a simulation model is typically

tested by verifying its predictions with respect to the

available data. In other words, it should be possible

for the simulation to "reproduce" the current data and

act as an explanation for the observations in the real

world system. The accuracy of a model can be

improved as an iterative process with the following

stages:

1. Formulate initial model and run simulation

Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

2

2. Once the simulation has stabilised, inspect its run

and determine whether it makes interesting

predictions, which need to be tested

3. Collect the relevant data and analyse it

4. Determine if the simulation predictions are

supported by the data

5. If the data does not support the predictions,

determine whether the model should be revised.

Experiment with variations of the original

simulation and return to Step 2.

Traditionally steps 2-5 are done interactively, by

visually inspecting the data. Within a truly DDDAS

environment however, this feedback loop should

ideally be automated.

To detect situations where the data refutes the

predictions, we need two sets of statements:

1. General statements on the patterns and trends in

the simulation.

2. General statements on the patterns and trends in

the real world data.

While these two sets of statements may be

assembled manually, this may be difficult, in

particular in the case of the real world data, due to its

complexity. For this purpose, data mining

algorithms can be applied to produce either.

In order to obtain comparable sets of statements we

apply the same data mining algorithm to both

simulation and real world data, which in turn means

that both data sets need to be similar. To generate the

required datasets, we use an ontology describing

what entities and events exist in the simulation and

what kinds of real world data will record similar

details about similar entities in the real world. A

state of an entity is a set of values for its attributes.

An event is any change of state of an entity and a

dataset can be a sequence of events.

The definitions of entities and events are used to

generate a similar dataset from the simulation. This

contains a sequence of simulated events. Note that

these events do not correspond to the particular

observed system. Therefore, we do not expect to

identify the individual events in the simulation

within the real world data. Instead, the general

patterns that are found in the simulation should also

be found in the real world data, if the model is

intended to explain that particular data.

To produce such generalisations, we are using

Association Rule Mining using the Apriori algorithm,

which is available in the WEKA Machine Learning

package (Witten and Frak, 2005)). This algorithm

is suited to large databases containing qualitative

data which is often produced in social science

research. Furthermore, it is “unsupervised” in the

sense that predefined classes are not given. This

allows the discovery of unexpected relationships.

Informally, an association rule produced by Apriori

is as follows:

if (conjunction of antecedents) s
1
 then

(conjunction of succedents) s
2
 conf(c)

Each antecedent and succedent has the form

“attribute = value”. s
1

 and s
2

 are known as the

support values and c is the confidence. The support

value s
1

 is the number of occurrences (records) in

the dataset containing all the antecedents. s
2

 is the

number of occurrences of both the right and left sides

together. Only those collections of items with a

specified minimum support are considered as

candidates for construction of association rules. The

confidence is s
2

/s
1
. It is effectively the accuracy of

the rule in predicting the consequences, given the

antecedents. An example minimum confidence may

be 0.9. The higher the support and confidence of a

rule, the more it represents a regular pattern in the

dataset. These measures are currently not taken into

account when checking consistency. If they are

relatively low, then any inconsistency would be less

“strong” than it would be for rules with high

confidence and high support.

3 DETECTING INCONSISTENCIES

In order to check the consistency of our model with

the real world system we want to compare the rule

sets mined for both the simulation data and the real

world data, and, in case, we find inconsistencies we

want to exploit this knowledge to refine the

simulation model. We propose to do this using

propositional logic and a SAT solver. We first

describe how we formalise the sets of rules in

propositional logic and then present how to employ a

SAT solver to find inconsistencies between rule sets,

while incrementally adding rules during the

simulation.

3.1 Formalising Rules

The data we have both for the real world system as

well as generated from the simulation is a set of

Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

3

records, where each record consists of a set of

attributes together with their assigned values. The

basic elements of our rules are therefore

attribute/value pairs of the form p=v, where p is

some attribute (or parameter) and v is an associated

value. In each record a unique value v is assigned to

each occurring attribute p. However, while p stays

the same, v will vary.

The association rules we mine from the data can then

be represented as

 1 1m na a c c  →   (1)

where each literal , 1, ,ia i m=  and , 1, ,j jc n= 

is an attribute/value pair of the form p=v. Obviously

we can simplify the overall rule set by normalising

all rules to have only a single literal in the succedent.

That is, a rule of the form of (1), can be replaced by n

rules of the form
1 m ja a c → , j=1,…,n.

We say that two literals are related if they have the

same attribute. That is two literals a,b are related, if a

is of the form p
1
=v

1
 and b is of the form p

2
=v

2
 and

p
1
=p

2
 while v

1
 is not necessarily equal to v

2
.

Observe that no related literals can occur in the

antecedent or succedent of a rule. That is, each

attribute can occur at most once in the antecedent or

succedent. However, we can have related literals in

the antecedent and succedent.

We call two rules related if they have related

succedents, regardless of their antecedents. Two

rules are considered inconsistent if they have

equivalent antecedents and related succedents p=v
1

and p=v
2

, but 21 vv  . Note that while the rules

1 1 1: mR a a p v → = ,
2 1 2: mR a a p v → =

are inconsistent for 21 vv  , R
1

 is nevertheless

consistent, for example, with the rules

1 1 2ma a p v+ → = or
1 1 2ma a p v− → = .

This expresses that if a particular condition is not

met or if an additional condition is present there can

be a different consequence in the model. Thus ‘→’

is not implication in the classical sense.

We therefore represent rules with a binary predicate

F that takes a set of literals and a single literal as

arguments. We then replace every single rule of the

form
1 ma a c → by a predicate

1({ , , },)ma a cF . Since we now consider the

antecedents of a rule as a set of literals, thereby

abolishing their order, we can easily detect and

remove duplicate rules.

To postulate the consistency of a rule set we first

define for each set of related succedent literals c a

context as follows: Given predicates

1 1(,), , (,)n nA c A cF F where each A
i
 is a set of

literals and all the c
i
 are related with respect to an

attribute p for i=1,…,n, i.e., every c
i
 is of the form

p=v
i
, we define the context of the attribute p as

1

n

p i

i

A
=

=C . Let ()pP C be the power set of
pC

we then define for each ()pBP C and each

, 1 ,ic i n=  an exclusiveness condition of the form

1 1 1(,) (,) (,) (,) (,),i i i nB c B c B c B c B c− +   F F F F F

 (2)

where , ,   is logical implication, conjunction,

and negation, respectively.

3.2 Incremental Consistency Checking

In order to guarantee the consistency of the

simulation model with the real world system the two

association rule sets extracted from data generated

by both are checked for consistency. Furthermore,

since both rule sets are continuously extended by the

progressing data mining as more real world and

simulation data becomes available, consistency has

to be checked on a regular basis.

The initial two rule sets are separately formalised as

described previously, i.e., sets of rules are

represented by conjunctions of predicates and

exclusiveness conditions are added. We then

transform both into conjunctive normal form1 and

replace all predicates by propositional variables. We

can then simply employ a SAT solver (in our current

implementation we employ zChaff (M. Moskewicz

et al. (2001)) to check for consistency of rule sets; if

the problem is satisfiable the rules are consistent, if it

is unsatisfiable they are not.

Each rule set is checked for consistency separately to

guarantee the correctness of the association rule

mining. If both rule sets are consistent they are

combined and again checked for inconsistency.

Once inconsistency is detected, we search for pairs

1 In fact, exclusiveness conditions are directly generated

as pairs of negated predicates.

Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

4

of inconsistent rules by first checking for each subset

of rules that belong to a particular context whether

they are inconsistent; this search is again conducted

with zChaff. Then for all inconsistent contexts we

isolate the offending rules and report them back to

the simulation for model refinement.

Figure 1: Simulation run after n steps

Figure 2: AIMSS Configuration window

Throughout the run of a simulation consistency of

the rule sets is checked whenever new rules become

available during the data mining process. New are

rules are added incrementally to the problem

specification and tested for consistency by

formalising the new rule as additional predicate and,

if necessary, adding new exclusiveness conditions.

In case the new rule is of the form (,)A p v=F we

(i) find the context set
pC

(ii) compute
p pA = C C and

(iii) if either p=v is new or
p p=C C

we construct and add the necessary new

exclusiveness conditions as given in equation (2).

Similarly, if the simulation model is altered to

eliminate inconsistencies, we can simply alter the

problem formalisation by removing the offending

rules, while still retaining the exclusiveness

conditions.

4 A SOCIAL SCIENCE CASE STUDY

As a case study within the AIMSS project2, we are

focusing on social housing data collected by local

housing authorities. This is a database of moves into

the social rented sector (tenancies begun with Social

Landlords) called CORE. Each record corresponds

to a move and gives details of the previous and new

situations, along with such attributes on:

(a) household details such as number of persons,

total weekly income and whether they own their

own home before

(b) details of the home they are moving into such as

what it will cost them (weekly rent) and the type

of property

(c) stated reason for move (e.g., affordability,

overcrowding, health, poor condition of home,

neighbour harassment) defining the state.

Events are then a sequence of moves from one home

to another. For our experiments we have

implemented a simplified agent-based simulation

using the RePast toolki3. Households are represented

as single agents.

The agents’ behaviour is defined in the form of

simple "if-then" rules that determine if and when an

agent moves. At initialisation, homes are allocated

randomly to regions with largest number in inner

city and city centre (figure 1). Precise densities and

other attributes of each region, such as crime and

pollution level, public services etc., can be specified

as parameters via a configuration window (as

illustrated in figure 2). The simulation model is for a

2http://www.cs.bham.ac.uk/research/projects/aimss/
3 http://repast.sourceforge.net/

Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

5

typical housing situation on an abstract level, not a

particular geographical area. Therefore, its

predictions will be in the form of statements that

should be true in general about households moving

into social housing.

While for the CORE database some preprocessing is

necessary so that it can be processed by a data

mining algorithm, both datasets refer to the same

kind of entities and events, and the generalised

statements are therefore directly comparable and

consistency-checking is feasible. An example of a

typical association rule discovered in the CORE data

set is:
if incomeLevel=1,

moveReason=affordability 283 then

newHomeCost=1 283 c:1

This specifies that if the income level is in the

lowest bracket and the reason for moving was

affordability then the rent to be paid for the new

home is in the lowest bracket. The number 283

specifies how often the antecedents and succedents

occur in the dataset and therefore the confidence is 1.

An example of an association rule in the simulation

data set that is inconsistent with the above rule is the

following

if moveReason=affordability,

incomeLevel=1 102 then newHomeCost=2 98

c:.96

To preserve space in the formalisation we first let p =

newHomeCost and A={incomeLevel=1,

moveReason=affordability}. We can then

formalise the two rules as (,)A p =1F and

(,)A p =2F , respectively. In order to define the

context of the rules we also have to take the other

values of the predicate newHomeCost into account

that occur in the data set, which are

newHomeCost=3 and newHomeCost=4-or-more.

Give these we can construct all the necessary

exclusiveness conditions for the incremental

consistency checking. In the example the relevant

exclusiveness conditions to detect the two

inconsistent rules are

(,) (,) (,) (,)A p A p A p A p=   =  =  =1 2 3 4-or-moreF F F F
(,) (,) (,) (,)A p A p A p A p=   =  =  =2 1 3 4-or-moreF F F F

Once zChaff detects this inconsistency the two

conflicting rules can be used for the refinement of

the simulation model.

5 CONCLUSIONS

We have presented a method for the automatic

refinement of simulation models in symbiotic

simulations based on association rule mining and

satisfiability checking. We extract association rules

for both real world and simulation data, and use a

SAT solver to detect possible inconsistencies

between both rule sets that can be used as feedback

in the simulation model. Additional rules describing

the ongoing simulation and the observed system can

easily be integrated in an incremental process as

soon as they become available.

In addition to finding inconsistencies, the current

implementation also enables simplification of the

rule set by removing redundancies as well as by

grouping rules with respect to related succedents.

This aids the presentation of the rules and thus their

interpretation by the user.

While in the current state of our system the

satisfiability problems are still fairly simple, we have

already had promising results finding

inconsistencies for the simulation in our housing

case study. We are currently experimenting with

ways to incorporate the knowledge into the

simulation model. Furthermore, our work is a first

step to further applications of SAT solving in the

context such as finding minimal rule sets or deriving

consequences from mined association rules for

better prediction of system behaviour.

REFERENCES

M. Moskewicz and C. Madigan and Y. Zhao and

L. Zhang and S. Malik, (2001), Chaff:

Engineering an efficient SAT Solver,

Proceedings o fthe DAC-2001 Conference,

pp530 – 535.

I. Witten and E. Frak (2005), Data Mining:

Practical Machine Learning Tools and

Techniques, Elsevier, 2005

R. Agrawal and R. Srikan (1994), Fast Algorithms

for Mining Association Rules in Large,

Proceedings of the International Conference

on Very Large Databases, pp. 478–499

C. Kennedy and G. Theodoropoulos, (2006a)

Intelligent Management of Data Driven

Simulations to Support Model Building in the

Social Sciences, Proceedings of ICCS 2006,

LNCS 3993, pp. 562–569, 2006.

C. Kennedy and G. Theodoropoulos, (2006b)

Adaptive Intelligent Modelling for the Social

Sciences: Towards a Software Architecture",

Technical Report CSR-06-11, University of

Proceedings of the Operational Research Society Simulation Workshop 2010 (SW10)

6

Birmingham, School of Computer Science,

October 2006.

C. Kennedy and G. Theodoropoulos, Towards

Intelligent Data-Driven Simulation for Policy

Decision Support in the Social Sciences,

Technical Report CSR-05-9, University of

Birmingham, School of Computer Science,

October 2005

P. Lee, Ed Ferrari, C. Kennedy, G. Theodoropoulos

and C. Skelcher, Assisted Model Building in

the Social Sciences using Data Driven

Simulation, Proceedings of 2nd International

Conference in e-Social Science, Manchester,

UK. June 2006.

C. Kennedy, G. Theodoropoulos, E. Ferrari, P. Lee,

and C. Skelcher, Towards an Automated

Approach to Dynamic Interpretation of

Simulations, Asia Modelling Symposium

2007, University in conjunction with

Thailand’s 11th Annual National Symposium

on Computational Science and Engineering

(ANSCSE-11), Prince of Songkla University,

Phuket Campus, 27 - 30 March 2007.

F. Darema, Grid Computing and Beyond: The

Context of Dynamic Data Driven Applications

Systems, (2005) Proceedings of the IEEE:

Special Issue on Grid Computing, Vol. 93, No.

3, pp.692–697, 2005.

