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ABSTRACT 

Simulation models are used to predict future or 

hypothetical states of an observed system. To obtain 

accurate simulation models one needs to ensure that 

the data generated by the simulation is consistent 

with the data obtained from the observed system. This 

is a central issue in the area of symbiotic simulation 

where there is an online feedback loop between the 

system and its simulation. In this paper we use 

association rule data mining in order to compare the 

two data sets. This results in rule sets for both real 

world and simulation data, which can then be 

checked for inconsistencies. We present how we 

formalise rules mined from different data sets in 

propositional logic and how we employ a SAT solving 

system to detect inconsistencies of different rule sets 

in an incremental process, which gradually 

incorporates rules mined during an ongoing 

simulation. Once an inconsistency is detected we 

extract the interfering simulation rules and use them 

to refine the simulation model.  

1  INTRODUCTION 

In the physical sciences, symbiotic simulation (or 

DDDAS, Dynamic Data Driven Application Systems) 

is a method where data from a physical system is 

absorbed into a simulation of the system in order to 

continually adapt the model to the reality, if 

necessary making changes to the assumptions on 

which it is based (Darema, 2005). The simulation 

predictions can in turn potentially be used to 

determine the data to be absorbed and steer the 

observed system. Symbiotic simulation can be used 

to optimise management of real world systems in 

areas such as commerce, communication, or 

transportation by close interaction with the system 

being observed and simulated. 

 

One important aspect is to ensure that the simulation 

models closely the real world system. As part of a 

project which investigates the application of 

symbiotic simulation to the social sciences: AIMSS- 

Adaptive Intelligent Model-building for the Social 

Sciences (Kennedy and Theodoropoulos (2006a), 

Kennedy and Theodoropoulos (2006b), Kennedy 

and Theodoropoulos (2005), Kennedy et al. (2007)) 

we have worked on a method to compare the data 

obtained from the real world system with the data 

generated by the simulation using a data mining 

approach. For both data sets we apply association 

rule mining  (Agrawal and R. Srikan, 1994) to 

extract association rules that describe dependencies 

within the data. We explain this in section Sec. 2 

 

The extracted rule sets can subsequently be checked 

for inconsistencies between the simulation and the 

real system. We use an encoding in propositional 

logic for the association rule set and employ a 

satisfiability solver to find inconsistencies. To 

accommodate the continuous nature of the 

simulation process we adopt an incremental process, 

which gradually incorporates rules mined during the 

ongoing simulation into the formalisation and 

consistency checking. We present the details in 

Sec. 3. Once an inconsistency is detected the 

interfering simulation rules can be extracted and 

used to support the refinement of the simulation 

model. In Sec 4, we illustrate how our approach can 

be applied in a simple case study from social 

sciences. 

2  SYMBIOTIC SIMULATION 

The accuracy of a simulation model is typically 

tested by verifying its predictions with respect to the 

available data. In other words, it should be possible 

for the simulation to "reproduce" the current data and 

act as an explanation for the observations in the real 

world system. The accuracy of a model can be 

improved as an iterative process with the following 

stages:  

1. Formulate initial model and run simulation  
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2. Once the simulation has stabilised, inspect its run 

and determine whether it makes interesting 

predictions, which need to be tested  

3. Collect the relevant data and analyse it  

4. Determine if the simulation predictions are 

supported by the data  

5. If the data does not support the predictions, 

determine whether the model should be revised. 

Experiment with variations of the original 

simulation and return to Step 2.  

Traditionally steps 2-5 are done interactively, by 

visually inspecting the data. Within a truly DDDAS 

environment however, this feedback loop should 

ideally be automated. 

 

To detect situations where the data refutes the 

predictions, we need two sets of statements:  

1. General statements on the patterns and trends in 

the simulation.  

2. General statements on the patterns and trends in 

the real world data.  

While these two sets of statements may be 

assembled manually, this may be difficult, in 

particular in the case of the real world data, due to its 

complexity. For this purpose, data mining 

algorithms can be applied to produce either. 

 

In order to obtain comparable sets of statements we 

apply the same data mining algorithm to both 

simulation and real world data, which in turn means 

that both data sets need to be similar. To generate the 

required datasets, we use an ontology describing 

what entities and events exist in the simulation and 

what kinds of real world data will record similar 

details about similar entities in the real world. A 

state of an entity is a set of values for its attributes. 

An event is any change of state of an entity and a 

dataset can be a sequence of events. 

 

The definitions of entities and events are used to 

generate a similar dataset from the simulation. This 

contains a sequence of simulated events. Note that 

these events do not correspond to the particular 

observed system. Therefore, we do not expect to 

identify the individual events in the simulation 

within the real world data. Instead, the general 

patterns that are found in the simulation should also 

be found in the real world data, if the model is 

intended to explain that particular data. 

 

To produce such generalisations, we are using 

Association Rule Mining using the Apriori algorithm, 

which is available in the WEKA Machine Learning 

package (Witten and Frak, 2005)). This algorithm 

is suited to large databases containing qualitative 

data which is often produced in social science 

research. Furthermore, it is “unsupervised” in the 

sense that predefined classes are not given. This 

allows the discovery of unexpected relationships. 

 

Informally, an association rule produced by Apriori 

is as follows: 
 

if (conjunction of antecedents) s
1
 then 

(conjunction of succedents) s
2
 conf(c) 

Each antecedent and succedent has the form 

“attribute = value”. s
1

 and s
2

 are known as the 

support values and c is the confidence. The support 

value s
1

 is the number of occurrences (records) in 

the dataset containing all the antecedents. s
2

 is the 

number of occurrences of both the right and left sides 

together. Only those collections of items with a 

specified minimum support are considered as 

candidates for construction of association rules. The 

confidence is s
2

/s
1
. It is effectively the accuracy of 

the rule in predicting the consequences, given the 

antecedents. An example minimum confidence may 

be 0.9. The higher the support and confidence of a 

rule, the more it represents a regular pattern in the 

dataset. These measures are currently not taken into 

account when checking consistency. If they are 

relatively low, then any inconsistency would be less 

“strong” than it would be for rules with high 

confidence and high support. 

3  DETECTING INCONSISTENCIES 

In order to check the consistency of our model with 

the real world system we want to compare the rule 

sets mined for both the simulation data and the real 

world data, and, in case, we find inconsistencies we 

want to exploit this knowledge to refine the 

simulation model. We propose to do this using 

propositional logic and a SAT solver. We first 

describe how we formalise the sets of rules in 

propositional logic and then present how to employ a 

SAT solver to find inconsistencies between rule sets, 

while incrementally adding rules during the 

simulation. 

3.1  Formalising Rules 

The data we have both for the real world system as 

well as generated from the simulation is a set of 
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records, where each record consists of a set of 

attributes together with their assigned values. The 

basic elements of our rules are therefore 

attribute/value pairs of the form p=v, where p is 

some attribute (or parameter) and v is an associated 

value. In each record a unique value v is assigned to 

each occurring attribute p. However, while p stays 

the same, v will vary. 

The association rules we mine from the data can then 

be represented as  

 1 1m na a c c  →                        (1) 

where each literal , 1, ,ia i m=   and , 1, ,j jc n=   

is an attribute/value pair of the form p=v. Obviously 

we can simplify the overall rule set by normalising 

all rules to have only a single literal in the succedent. 

That is, a rule of the form of (1), can be replaced by n 

rules of the form 
1 m ja a c → ,  j=1,…,n. 

 

We say that two literals are related if they have the 

same attribute. That is two literals a,b are related, if a 

is of the form p
1
=v

1
 and b is of the form p

2
=v

2
 and 

p
1
=p

2
 while v

1
 is not necessarily equal to v

2
. 

Observe that no related literals can occur in the 

antecedent or succedent of a rule. That is, each 

attribute can occur at most once in the antecedent or 

succedent. However, we can have related literals in 

the antecedent and succedent.  

 

We call two rules related if they have related 

succedents, regardless of their antecedents. Two 

rules are considered inconsistent if they have 

equivalent antecedents and related succedents p=v
1
 

and p=v
2

, but 21 vv  . Note that while the rules 

1 1 1: mR a a p v → = , 
2 1 2: mR a a p v → =  

are inconsistent for 21 vv  , R
1

 is nevertheless 

consistent, for example, with the rules 

1 1 2ma a p v+ → =  or 
1 1 2ma a p v− → = . 

This expresses that if a particular condition is not 

met or if an additional condition is present there can 

be a different consequence in the model. Thus ‘→’ 

is not implication in the classical sense. 

 

We therefore represent rules with a binary predicate 

F that takes a set of literals and a single literal as 

arguments. We then replace every single rule of the 

form 
1 ma a c →  by a predicate 

1({ , , }, )ma a cF . Since we now consider the 

antecedents of a rule as a set of literals, thereby 

abolishing their order, we can easily detect and 

remove duplicate rules. 

 

To postulate the consistency of a rule set we first 

define for each set of related succedent literals c a 

context as follows: Given predicates 

1 1( , ), , ( , )n nA c A cF F  where each A
i
 is a set of 

literals and all the c
i
 are related with respect to an 

attribute p for i=1,…,n, i.e., every c
i
 is of the form 

p=v
i
, we define the context of the attribute p as 

1

n

p i

i

A
=

=C . Let ( )pP C  be the power set of  
pC  

we then define for each ( )pBP C  and each 

, 1 ,ic i n=   an exclusiveness condition of the form  

1 1 1( , ) ( , ) ( , ) ( , ) ( , ),i i i nB c B c B c B c B c− +   F F F F F

 (2) 

where , ,    is logical implication, conjunction, 

and negation, respectively. 

3.2  Incremental Consistency Checking 

In order to guarantee the consistency of the 

simulation model with the real world system the two 

association rule sets extracted from data generated 

by both are checked for consistency. Furthermore, 

since both rule sets are continuously extended by the 

progressing data mining as more real world and 

simulation data becomes available, consistency has 

to be checked on a regular basis. 

 

The initial two rule sets are separately formalised as 

described previously, i.e., sets of rules are 

represented by conjunctions of predicates and 

exclusiveness conditions are added. We then 

transform both into conjunctive normal form1 and 

replace all predicates by propositional variables. We 

can then simply employ a SAT solver (in our current 

implementation we employ zChaff  (M. Moskewicz 

et al. (2001)) to check for consistency of rule sets; if 

the problem is satisfiable the rules are consistent, if it 

is unsatisfiable they are not. 

 

Each rule set is checked for consistency separately to 

guarantee the correctness of the association rule 

mining. If both rule sets are consistent they are 

combined and again checked for inconsistency. 

Once inconsistency is detected, we search for pairs 

 
1 In fact, exclusiveness conditions are directly generated 

as pairs of negated predicates. 
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of inconsistent rules by first checking for each subset 

of rules that belong to a particular context whether 

they are inconsistent; this search is again conducted 

with zChaff. Then for all inconsistent contexts we 

isolate the offending rules and report them back to 

the simulation for model refinement. 

 

 

Figure 1: Simulation run after n steps 

 

Figure 2: AIMSS Configuration window 

Throughout the run of a simulation consistency of 

the rule sets is checked whenever new rules become 

available during the data mining process. New are 

rules are added incrementally to the problem 

specification and tested for consistency by 

formalising the new rule as additional predicate and, 

if necessary, adding new exclusiveness conditions. 

In case the new rule is of the form ( , )A p v=F we 

(i) find the context set 
pC   

(ii) compute 
p pA = C C  and  

(iii) if either p=v is new or 
p p=C C   

we construct and add the necessary new 

exclusiveness conditions as given in equation (2).  

Similarly, if the simulation model is altered to 

eliminate inconsistencies, we can simply alter the 

problem formalisation by removing the offending 

rules, while still retaining the exclusiveness 

conditions. 

4  A SOCIAL SCIENCE CASE STUDY 

As a case study within the AIMSS project2, we are 

focusing on social housing data collected by local 

housing authorities. This is a database of moves into 

the social rented sector (tenancies begun with Social 

Landlords) called CORE. Each record corresponds 

to a move and gives details of the previous and new 

situations, along with such attributes on:  

(a) household details such as number of persons, 

total weekly income and whether they own their 

own home before  

(b) details of the home they are moving into such as 

what it will cost them (weekly rent) and the type 

of property  

(c) stated reason for move (e.g., affordability, 

overcrowding, health, poor condition of home, 

neighbour harassment) defining the state.  

Events are then a sequence of moves from one home 

to another. For our experiments we have 

implemented a simplified agent-based simulation 

using the RePast toolki3. Households are represented 

as single agents. 

 

The agents’ behaviour is defined in the form of 

simple "if-then" rules that determine if and when an 

agent moves. At initialisation, homes are allocated 

randomly to regions with largest number in inner 

city and city centre (figure 1). Precise densities and 

other attributes of each region, such as crime and 

pollution level, public services etc., can be specified 

as parameters via a configuration window (as 

illustrated in figure 2). The simulation model is for a 

 
2http://www.cs.bham.ac.uk/research/projects/aimss/ 
3 http://repast.sourceforge.net/ 
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typical housing situation on an abstract level, not a 

particular geographical area. Therefore, its 

predictions will be in the form of statements that 

should be true in general about households moving 

into social housing. 

 

While for the CORE database some preprocessing is 

necessary so that it can be processed by a data 

mining algorithm, both datasets refer to the same 

kind of entities and events, and the generalised 

statements are therefore directly comparable and 

consistency-checking is feasible. An example of a 

typical association rule discovered in the CORE data 

set is: 
if incomeLevel=1, 

moveReason=affordability 283 then 

newHomeCost=1 283 c:1 

This specifies that if the income level is in the 

lowest bracket and the reason for moving was 

affordability then the rent to be paid for the new 

home is in the lowest bracket. The number 283 

specifies how often the antecedents and succedents 

occur in the dataset and therefore the confidence is 1. 

 

An example of an association rule in the simulation 

data set that is inconsistent with the above rule is the 

following 

 
if moveReason=affordability, 

incomeLevel=1 102 then newHomeCost=2 98 

c:.96  

 

To preserve space in the formalisation we first let p = 

newHomeCost and A={incomeLevel=1, 

moveReason=affordability}. We can then 

formalise the two rules as ( , )A p =1F  and 

( , )A p =2F , respectively. In order to define the 

context of the rules we also have to take the other 

values of the predicate newHomeCost into account 

that occur in the data set, which are 

newHomeCost=3 and newHomeCost=4-or-more. 

Give these we can construct all the necessary 

exclusiveness conditions for the incremental 

consistency checking. In the example the relevant 

exclusiveness conditions to detect the two 

inconsistent rules are 

( , ) ( , ) ( , ) ( , )A p A p A p A p=   =  =  =1 2 3 4-or-moreF F F F
( , ) ( , ) ( , ) ( , )A p A p A p A p=   =  =  =2 1 3 4-or-moreF F F F

Once zChaff detects this inconsistency the two 

conflicting rules can be used for the refinement of 

the simulation model. 

5  CONCLUSIONS 

We have presented a method for the automatic 

refinement of simulation models in symbiotic 

simulations based on association rule mining and 

satisfiability checking. We extract association rules 

for both real world and simulation data, and use a 

SAT solver to detect possible inconsistencies 

between both rule sets that can be used as feedback 

in the simulation model. Additional rules describing 

the ongoing simulation and the observed system can 

easily be integrated in an incremental process as 

soon as they become available. 

 

In addition to finding inconsistencies, the current 

implementation also enables simplification of the 

rule set by removing redundancies as well as by 

grouping rules with respect to related succedents. 

This aids the presentation of the rules and thus their 

interpretation by the user. 

 

While in the current state of our system the 

satisfiability problems are still fairly simple, we have 

already had promising results finding 

inconsistencies for the simulation in our housing 

case study. We are currently experimenting with 

ways to incorporate the knowledge into the 

simulation model. Furthermore, our work is a first 

step to further applications of SAT solving in the 

context such as finding minimal rule sets or deriving 

consequences from mined association rules for 

better prediction of system behaviour. 
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