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ABSTRACT Inthispaper we discussthe distributed simula-
tion of agent-based systemsin HLA. Using the SIM_AGENT
toolkit and the Tileworld scenario as an example, we present
a design proposal showing how the HLA can be used to dis-
tribute a SIM_AGENT simulation with different agents be-
ing simulated by different federates. We outline the changes
necessary to the siIM_AGENT toolkit to allow integration
with the HLA, and show that, given certain reasonable as-
sumptions, all necessary code can be generated automati-
cally from the FOM and the object class publications and
subscriptions. The integration is transparent in the sense
that the existing SIM_AGENT code runs unmodified and the
agents are unaware that other parts of the simulation are
running remotely.

1 Introduction

An agent can be viewed as a self-contained, concur-
rently executing thread of control that encapsulat

nications, business process modelling, computer games,
control of mobile robots and military simulations.

While agents offer great promise, their adoption has
been hampered by the limitations of current develop-
ment tools and methodologies. Multi-agent systems are
often extremely complex and it can be difficult to for-
mally verify their properties. As aresult, design and im-
plementation remains largely experimental, and experi-
mental approaches are likely to remain important for the
foreseeable future. In this context, simulation has a key
role to play in the development of agent-based systems,
allowing the agent designer to learn more about the be-
haviour of a system or to investigate the implications of
alternative agent architectures, and the agent researcher
to probe the relationships between agent architectures,
environments and behaviour. The use of simulation al-
lows a degree of control over experimental conditions
and facilitates the replication of results in a way that is
difficult or impossible with a prototype or fielded sys-
tem, allowing the agent designer or researcher to focus
on key aspects of the system.

es

some state and communicates with its environment andSimulation has traditionally played an important role

possibly other agents via some sort of message passingagent research and a wide range of simulators and
The environment of an agent is that part of the world aestbeds have been developed to support the design and
computational system ‘inhabited’ by the agent. Agentmalysis of agent architectures and systems (Durfee &
are embedded in an environment. Emeironment may Montgomery 1989, Pollack & Ringuette 1990, Atkin,
contain other agents whose environments are disjoiestbrook, Cohen & Jorstad. 1998, Anderson 2000,
with or only partially overlap with the environment ofSchattenberg & Uhrmacher 2000). One such simulator
a given agent. Agent-based systems offer advantagesIiM_AGENT, a toolkit to support research in architec-
when independently developed components must intéures for intelligent, human-like agents (Sloman & Poli



1996)! environment or physical agents and their environment,
However no one testbed is, or can be, appropriateand as an agent implementation language, e.g., for
all agents and environments. Moreover, even if a sugeftware agents or the controller for a physical robot.
able simulator or testbed can be found for a given proBtM_AGENT has been used in a variety of research and
lem, the assumptions made by the simulator can makejtplied projects, including studies of affective and de-
difficult to generalise the results obtained, and demoliberative control in simple agent systems (Scheutz &
strating that a particular result holds across a rangelafgan 2001), agents which report on activities in col-
agent architectures and environments often requires ladorative virtual environments (Logan, Fraser, Field-
ing a number of different systems. ing, Benford, Greenhalgh & Herrero 2002) (which in-
Furthermore, the computational requirements of sirvelved integratingsiM_AGENT with the MASSIVE-3
ulations of many multi-agent systems far exceed théR system), and simulation of tank commanders in mil-
capabilities of conventional sequential von Neumaritary training simulations (Baxter & Hepplewhite 1999)
computer systems. Each agent is typically a compléfor this project,SIM_AGENT was integrated with an ex-
system in its own right (e.g., with sensing, planning, iristing real time military simulation).
ference etc. capabilities), requiring considerable com-In SIM_AGENT, an agent consists of a collection of
putational resources, and many agents may be requireddules representing the capabilities of the agent, e.g.,
to investigate the behaviour of the system as a wholegrception, problem-solving, planning, communication
even the behaviour of a single agent. A solution to thic. Groups of modules can execute either sequentially
problem is distributed simulation. or concurrently and with differing resource limits. Each
The High Level Architecture (HLA), the simulatormodule is implemented as a collection of rules in a
interoperability framework developed by the US Domvigh-level rule-based language calledPRULEBASE
DMSQ?, can help to address both of the above prol#owever the rule format is very flexible. Both the con-
lems, as it can allow the interoperability of various simditions and actions of rules can invoke arbitrary low-
ulators and testbeds which support different agent &gvel capabilities, allowing the construction of hybrid
chitectures and environments. Moreover, the compatchitectures including, for example, symbolic mecha-
nent simulations may be distributed on different ma¥sms communicating with neural nets and modules im-
chines to increase the overall performance of the glogzlemented in procedural languages. The rulesets which
simulation. In this paper, we investigate the feasibilmplement each module, together with any associated
ity of interfacing SIM_AGENT to HLA to support the procedural code, constitute thelesystem of an agent.
distributed simulation of agent-based systems. In selda€e toolkit can also be used to simulate the agent’s envi-
tion 2 we briefly describe theiM_AGENT toolkit and ronment.sIM_AGENT provides facilities to populate the
illustrate its application in a simple Tileworld scenarioagent’s environment with user-defined active and pas-
In section 3 we outline how thalLA can be used to sive objects (and other agents).
distribute an existingsIM_AGENT simulation with dif-  Simulation proceeds in three logical phases: sens-
ferent agents being simulated by different federatéBg, internal processing and action execution, where
In section 4 we sketch the changes necessary to the internal processing may include a variety of logi-
SIM_AGENT toolkit to allow integration with theiLA. cally concurrent activities, e.g., perceptual processing,
It turns out that, given certain reasonable assumptiomggtive generation, planning, decision making, learning
all necessary code can be generated automatically freig. (see Figure 1).
the FOM and the object class publications and subscrip-
tions. The integration is transparent in the sense that phaseone
the existingsIM_AGENT code runs unmodified and the | Getnew sense
. . data
agents are unaware that other parts of the simulation are
running remotely. We conclude with a brief description
of future work.

Phase Two Phase Three

run condition Perform Actions
rules and setup and send
actions messages

Figure 1: Logical structure of a simulation cycle

2 Anoverview of SIM_AGENT In the first phase each agent’s internal database is up-
] ) o dated according to what it senses and any messages sent

SIM_AGENT is an architecture-neutral toolkit originally 3¢ the previous cycle. Within aiM_AGENT simulation
developed to support the exploration of alternative,ch ghject or agent has both externally visible data and
agent architectures (Sloman & Poli 1996, Sloman &jyate internal data. The internal data can be thought
Logan 1999). It can be used both as a sequentig} a5 the agent's working memory database. The
centralised, time-driven simulator for multi-agent sySjatabase is used to hold the agent's model of the envi-
tems, e.g., to simulate software agents in an InteMghment, its current goals, plans etc. The internal data

1See http:/fwww.cs.bham.ac.ukhxs/cogaffect/simagent.html 1S ‘Private’ in the sense that other objects or agents have

23ee http:/iwww.dmso.mil/hla no direct access to it. The external data is data which




conceptually would be externally visible to other obto study commitment strategies (i.e., when an agent
jects in the environment, things such as colour, sizehould abandon its current goal and replan) and in
shape etc. For example, if an agent’s sensors are atdenparisons of reactive and deliberative agent archi-
to see all objects within a pre-defined distance, the itectures. SIM_TILEWORLD is an implementation of a
ternal database of the agent would be updated to contsingle-agent Tileworlg, which consists of an environ-
facts which indicate the visible attributes of all objectment and one agent (see Figure 2).

which are closer than the sensor range.

The next phase involves decision making and ag
tion selection. The contents of the agent’s databas
together with the new facts created in phase one a
matched against the conditions of the condition-actio
rules which constitute the agent’s rulesystem. It ma
be that multiple rule conditions are satisfied, or that th
same rule is satisfied multiple timesIM_AGENT al- - - -
lows the programmer to choose how these rules shou '
run and in what order. For example a certain progra
may require that only the first rule matched runs or tha
every satisfied rule should run. It is also possible td
build a list of all the runnable rules and then have :
user-defined procedure order this list so that only ce
tain rules (e.g., the more important rules) are run or a
run first. These rules will typically cause some inter
nal and/or external action(s) to be performed or meg
sage(s) to be sent. Internal actions simply update t
agent’s database and are performed immediately. E
ternal actions change the state of the environment and
are queued for execution in the third phase. )

The final phase involves sending the messages and Figure 2: A screen shot GfiM_TILEWORLD
performing the actions queued in the previous phase.

These external actions will usually cause the object toSIM_AGENT provides a library of classes and meth-
enter a new state (e.g., change its location) and hergsts for implementing agent simulations. The toolkit
sense new data. is implemented in Pop-11, an Al programming lan-

The three logical phases are actually implemented @igage similar to Lisp, but with an Algol-like syn-
two scheduler passes for reasons of efficiency. In th@&X. Pop-11 supports object-oriented development
first pass, the schedulesj mschedul er, processes via theoBJECTCLASSIlibrary, which provides classes,
the list of agents. For each agent, the scheduler runsmgthods, multiple inheritance, and generic functiéns.
sensors and rulesystem. Any external actions or m&M-AGENT defines two basic classesj mobj ect
sages generated by the agent in this pass are queue@n@si magent , which can be extended (subclassed)
the second pass, the scheduler processes the mestag@ive the objects and agents required for a partic-
and action queues for each agent, transferring the mg#ar simulation scenario. Thei mobj ect class is
sages to the input message buffers of the recipient(s) 8¢ foundation of allsiM_AGENT simulations: it pro-
processing at the next cycle, and running the actions\tsles slots (fields or instance variables) for the object's
update the environment and/or the publicly visible apame, internal database, sensors, and rulesystem to-
tributes of the agent. gether with slots which determine how often the ob-
ject will be run at each timestep, how many process-
ing cycles it will be allocated on each pass and so on.
Thesi magent class is a subclass afi mobj ect
In this section we briefly outline the design ana"hic,h_ provides simple message based commun_ication
implementation of a simplesiMm_AGENT simulation, _prlmltl_ves. SIM-AGENT assumes that all t_he objects
SIM_TILEWORLD. The Tileworld is a well established'” & simulation will be subclasses sf mobj ect or
testbed for agents (Pollack & Ringuette 1990). ft' magent.
consists of an environment consisting of tiles, holes FOr the SIM_TILEWORLD example three subclasses
and obstacles, and an agent whose goal is to sc8f&! mobj ect were defined to represent holes, tiles
as many points as possible by pushing tiles to fill {and obstacles, and two subclassesbmagent to
the holes. The envwonmen_t is dynamic: tiles holesw ulti-Agent Tileworld(s) do exist (Ephrati, Pollack & Ur 1995)
and obstacles appear and disappear at rates controlleag

: ) ' BJECTCLASSshares many features of the Common Lisp Object
by the simulation developer. Tileworld has been useystem ¢Los).

21 Anexample: SIM_TILEWORLD




represent the environment and the agent. The sulfhe RTI is the middleware software that provides com-
classes define additional slots to hold the relevant simon services to simulation systems. Communication
ulation attributes, e.g., the position of tiles, holes arfietween federates and federations is done via the RTI.
obstacles, the types of tiles, the depth of holes, the tilEke FOM is supplied as data to the RTI at the beginning
being carried by the agent etc. By convention, externaf an execution.
data is held in slots, while internal data (such as whichThere are two distinct ways in whichiM _AGENT
hole the agent intends to fill next) is held in the agentisiight use the facilities offered by th&.A. The first,
database. which we call thedistribution of SIM_AGENT, involves
The simulation consists of two active objects (the emsingHLA to distribute the agents and objects compris-
vironment and the agent) and a variable number of paag a SIM_AGENT simulation across a number of fed-
sive objects (the tiles, holes and obstacles). At simerates. The second, which we cier-operation, in-
lation startup, instances of the environment and ageamtives usingHLA to integratesiM_AGENT with other
classes are created and passed to the scheduler. At esaclulators. In this paper we concentrate on the former,
cycle the scheduler runs the environment agent to upamely distributing an existingIM_AGENT simulation
date the agent’s environment. $nM _TILEWORLD the usingSIM_TILEWORLD as an example.
environment agent has a simple rulesystem with no con-The HLA offers services in six areas, namely Fed-
ditions (i.e., it runs every cycle) which causes tiles, oleration Management, Object Management, Declaration
stacles and holes to be created and deleted accordingtanagement, Ownership Management, Time Manage-
user-defined probabilities. The scheduler then runs theent, and Data Distribution Management. In the re-
agentwhich perceives the new environment and updateainder of this section, we outline the role of these ser-
its internal database with the new sense data. The seites in distributing thesiM_TILEWORLD simulation.
sors of an agent are defined by a list of procedures afWle do not consider Federation Management for a dis-
methods (conventionallyi msense .agent methods tributedsiIM_AGENT federation as this is similar to other
for the classes involved in the simulation, but any pra+LA federations.)
cedures can be used). Any object in the simulation ob-

jects list which ‘satisfies’ these procedures or metho%s . .
(in the sense of being an appropriate method for the 0 -1 Object and Declaration Management

ject class in the case of methods or returning sensgpject and Declaration Management enable the feder-
data in the case of procedures) is considered ‘sensgbs to share data, providing services for registering, up-
by the agent. The agent then runs all rules which haygting, deleting, discovering, reflecting and removing
their conditions satisfied (no ordering of the rules is Pefbjects as well as subscribing to and publishing data.
formed). Some of the rules may queue external actionsgased on thesiM_TILEWORLD implementation out-
(€.9., moving to or pushing a tile) which are performegheq in section 2.1, we chose to split the simulation
in the second pass of the scheduler at this cycle. Thigo two federates, corresponding to the Tileworld agent
completes the cycle and the process is repeated.  ang the Tileworld environment respectively. Figure 3
depicts the FOM for theiLA SIM_TILEWORLD exam-

. . . . ple. Two main subclasses are defined, namely Agent

3 DISt”bUtmg aSIM_AGENT simu- and Object, with the Object class having Tiles, Holes
lation and Obstacles as subclasses.
In the current implementation &fiM_TILEWORLD,

The High Level Architecture HLA) allows different the communication between the agent and the envi-
simulations, referred to afederates, to be combined ronment federates is performed via the objects in the
into a single larger simulation known asfederation FOM, via the creation, deletion and updating of at-
(DMS 1998). The federates may be written in differtributes. Thus, no interactions are specified in the FOM.
ent languages and may run on different machines. Phe agent object is included in the FOM as certain at-

federation is made up of: tributes of the agent may be accessed by other federates.
The case for this would become clearer in a multi-agent
e one or more federates implementation okIM_TILEWORLD, where the agents

would need to know the position of other agents in the
environment (for sensing). Table 1 illustrates the corre-
e the Runtime Infrastructure (RTI) sponding object class publications and subscriptions.
The attributepositionof the Agent class is published
The FOM defines the types of and the relationshipy the Agent federate as this federate updates the posi-
among the data exchanged between the federates itioa of the Agent. The same applies to therriedTiles
particular federation. The structure of all FOMs is deattribute for the Agent class. Theosition attribute
fined by the Object Model Template (OMT) which enfor the Tile class is published by both the Environment
sures federations can communicate with one anothand the Agent federate. This is because initially, when

e a Federation Object Model (FOM)



3.2 Ownership Management

ObjectRoot

privelegeToDeleteObject: srin HLA rules require federates to own attribute instances
Zf before they can update their value. This ensures that
at any point in time only one federate may update an
attribute and is achieved via ownership Management
services. Ownership Management plays an important
% % role in a dynamic environment such as Tileworld. In
‘ ‘ the single agensiM_TILEWORLD example, the tran-
Agent Object sition of ownership is quite straightforward. However
CartiedTies: TilesList ife: nteger it becomes more complicated as more agent federates
i T i are added in the simulation. For instance, in a multi-
agent Tileworld two (or more) agents may try to push
Obstacle Tile Hole the same tile. In terms of ownership management this
Type e | | oo e raises important questions. Before an agent federate can
move a tile it must obtain ownership of the tilgg®si-
tion attribute. Once the tile has been moved by this
Figure 3: An example FOM fosIM_TILEWORLD agent, the second agent’s move should become invalid,
as the tile is no longer at the position at which the agent
initially perceived it.
For other attributes this may not be the case. For ex-

Tileworld

position: position

Federate ample, if the tile has a colour attribute that two agents
Object Environment| Agent both wish to change. If the first agent changes the
Agent colour to blue and the second agent changes it to red the
privelegeToDeleteObject publish publish tile would first change to blue and then to red. The fact
position subscribe | publish that the first agent changes the colour to blue doesn't
iﬁgledﬂles subscribe | publish mean the second agent cannot then change the colour
privelegeToDeleteObject publish publish again.
position publish publish
life publish subscr!be 33 TimeM anagement
type publish subscribe
Hole Time Management services in theA perform two
privelegeToDeleteObject publish publish main roles, namely, coordinating the advancement of
position publish subscribe| ggical time in federates and controlling delivery of
life p”b:!SE subscribe|  ime_stamped events to prevent federates receiving "old
type publis subscribe| o onts, i.e., events with logical time less than the feder-
depth publish publish . .
Obstacle ates current Ioglcal time. _ _ _
privelegeToDeleteObject publish publish SIM_AGENT is a centralised, time-driven system
position publish subscribe where simulation advances in timesteps, referred to as
life publish subscribe cycles. As explained in section 2, at the end of a cycle

a series of actions may change some aspects of the sim-
ulation. These changes are then perceived by all agents
Tgble 1: Object C!ass Publications and Subscriptions g the beginning of the next cycle. It therefore makes
Tileworld Federation sense that the Federation should synchronise at the end
(or beginning) or each cycle. This can be achieved
by making the all federates time-regulating and time-
constrained. This ensures that the federates will pro-

the tile is created, the Environment federate will s&€€d in a timestep fashion, alternating between per-
the Tile’s position. However, when the Agent federat@'Ming their external actions and perceiving changes.

picks up the Tile it will start to update theosition at-

tribute. Similarly, thedepthattribute of the Hole class 3 4 Data Distribution M anagement

will be updated when the agent places a tile in a hole.

Initially, when the hole is created, the Environment fedFhe aim of Data Distribution Management (DDM) is
erate will set the depth of the hole. As the Agent fede limit the amount of data exchanged between the fed-
erate places tiles in the hole it will change tdepth erates in the simulation. This is achieved through the
attribute. The other attributes are largely self explanapecification of subscription and publishing regions in
tory. routing spaces, with each region implicitly defining an



interconnection pattern between federates, and the ase we have to modify thesiMm _AGENT scheduler so
signment of multicast groups to these regions. Due that only those agents simulated by this federate
to the complexity of router configuration and the lim-  are actually run at each cycle. We also have to
ited availability of multicast groups, the assignment handle object discovery, propagation of object at-
of multicast groups is static and is based on a pri- tributes, and synchronisation at each cycle.
ori knowledge of the federates’ interconnection pat-
terns (Morse & Zyda 2000) However, as explaineau\ﬂ_AGENT has the ab|l|ty to make Simple calls to func-
in (Logan & Theodoropoulos 2001), in complex agemtions written in C.SsIM_AGENT will therefore be inter-
based systems it is difficult, if at all possible, to detefaced with the C++ version of the RTI. Any RTI Am-
mine an appropriate simulation topo|ogy a priori’ anaassador methods and Federate Ambassador methods
therefore, static interest management schemes are ir2@eded for the implementation will be given appropriate
equate. Various efforts have been and are currently SeWrappers. The idea being all RTI calls can be made
ing undertaken to define alternative dynamic schem&8M SIM_AGENT as though we have animplementation
for Interest Management (Morse & Zyda 2000, Logafif the RTI written in Pop-11.
& Theodoropouk)s 2001); in (Logan & Theodoropou_ In what follows, we brlefly describe the necessary
los 2001) an approach which combines dynamic intefhanges tesIM_AGENT in more detail. In section 4.5
est management and load ba|ancing for the simulatib outline the operation of the modified scheduler over
of agent-based systems has been introduced. a single simulation cycle (see Figure 1). It turns out
The sensors used BIM_AGENT can be restricted to that the changes to the scheduler are confined to the first
a certain range. Therefore although using DDM woulensing) and third (action) phases. The second phase
increase the efficiency of the simulation it is not esseffivolves only the internal operation of the agent and up-
tial for the early stages of the integration exercise déates to the agent's ipate database. Such updates are
scribed in this paper. Federates will send information #pically invisible to other agents, and can be ignored
one another based on the publish-subscribe informatifsti the purposes of distributidn
provided in table 1 and it will be up to the individual
agents to ‘sense’ and filter the relevant information. 4.1 Representing the federation

. At each federate, we split the objects in the simulation
4 Extendi ng the SIM_AGENT into two lists: thescheduler list and thesimulation ob-
toolkit jects list. The scheduler list contains instances of the
standardsi mobj ect andsi magent classes and
In this section we briefly sketch the extensions ne#1eir subclasses which are being ‘run’ ByM AGENT
essary to thesiM_AGENT toolkit to allow an existing On this federate. The simulation objects list is used for
SIM_AGENT simulation to be distributed using thea.  the sensors and actions of the agents being simulated
We assume that we have an existisy AGENT sim- DY this federate. In what follows, we shall refer to the
ulation (e.g.,SIM_TILEWORLD) that we want to dis- Objects in the scheduler list as the “agents being sim-
tribute by placing disjoint subsets of the objects aridated by this federate”, always remembering that this
agents comprising the simulation on different federate@Verssi mobj ect s too. The simulation objects list
Our aim is to make this distribution transparent to tHeontains everything in the scheduler list together with
SIM_AGENT low level scheduler code and agents ary objects being simulated by other federates which
objects comprising the simulation. this federate knows about (e.g., via object discovery).
The general picture is as follows: Note that a federate may not know about all the objects
in the simulation (and in the limit case, none of the fed-
e we extendsIM_AGENT to hold additional data erates knows about all the objects in the simulation).
about the federation and the federate in which thewe define two new classe$)LAf eder at e and
SIM_AGENT process is running, e.g., the FOM, theq_ A obj ect . HLA f eder at e contains slots to hold
agents to be simulated by this federate, proxigse relevant data for aiM_AGENT process running on
for agents simulated by other federates, RTI boolgparticular federate, e.g., the scheduler and simulation
keeping information etc.; objects lists, the FOM for the federation, a handle to

tend the simulati | that uod the local RTlI ambassador etdLA_obj ect holds RTI
¢ we extend the simulation classes so that upda &okkeeping information for each object in the sim-
to publicly visible attributes by agents simulate

. . . lation, e.g., th i RTI i ifier for th j
by this federate (i.e., updates to public data corr%atIon €.g., the unique identifier for the object

. . ) ; (hich is shared by all the federates in the simulation.
sponding to attributes published by this federat Il instances of the existingIM_AGENT classes (i.e.
are propagated to other federates; . '

si mobj ect andsi magent and their subclasses)

e we r?e_e_d FO add some code to connect to the RTTsye have not considered the distribution of the components of a
and initialise the federate’s data structures; and single agent across multiple federates.



need to hold this bookkeeping information. We caapdates.

accomplish this in a straightforward way by declaring Attributes inSIM_AGENT are represented by slot val-
si mobj ect to be a subclass dfLA obj ect —in ues. Each slot has two predefined methodscaassor
OBJECTCLASSthere is no root class from which allwhich returns the current value, and apdater, which
other classes descend, and a new class definition sats the valueOBJECTCLASSprovidesmethod wrap-
“adopt” an existing class and its subclasses. pers, methods which extend or even replace the func-

We assume that all the class definitions for the objedienality of existing methods. A method wrapper is a
and agents comprising the simulation are available to albsure around a particular method which can modify
federates, and that all federates can create instancethefbehaviour of that method. Method wrappers can be
these classes to represent agents being simulated byued to “intercept” calls to the slot updater methods and
federate and as proxies for agents being simulated jpppagate the new value to other federates by making
other federates. the appropriate RTI calls.

For each attribute of each class in the FOM that is
published by this federate, we define a method wrapper
for the slot updater, e.g., the method wrapper for the
position slot of the tile object might look like:

4.2 Propagating the effects of actions

As stated in section 2, agents can perform two diffe
ent types of actions: internal actions which update the & . e b o o R b o ettt e o PP
agent’s pivatedatabase, and external actions which up- 7+ ! Rri-update_attributevalues(tiad dew ' frero), -
date publicly visible attributes of an object. Internal i 5o, ")! o weae

actions only affect the state of the agent and are pro- """

cessed immediately, since the effects of the action (i.e.,Note that ownership is acquired but not released by
changes to the contents of the agent's database or wafie method wrapper. Position is a mutually exclusive
ing memory) typically form part of a larger decisionattribute, since one agent changing the position of a
making process within the agent. However, in the cagig violates the precondition for any other action (by
of external actions, it is necessary to propagate the 4pe same or another agent) which attempts to move the
date to other federates which subscribe to the attribufge. If two agents running on different federates try to
This involves calls to the RTI to acquire ownership ahove a given tile at the same cycle, whichever agent’s
the attribute (if it is not currently owned by this fed-action is processed first will acquire ownership of the
erate) and to do the update. The aim is to make thefie and succeed, while the other agent’s action will be
additional calls transparent to the Pop-11 code that idenied ownership and fail. (Two agents running on the
plements the action. same federate could update the attribute, but in this case
The situation is complicated by the fact that extern@le can use checks on the preconditions of the actions,
actions are usually queued for execution at the end sihce the updates are mirrored locally.) At the end of
the current cycle. This avoids the agents “seeing” difhe cycle, when the actions of all the agents have been
ferent states of the environment during the first pass gfocessed, the scheduler relinquishes ownership of any
the scheduler, and means that the order in which agentgtually exclusive attributes acquired by the federate at
are processed by the scheduler doesn’t matter in sittige current cycle.
tions where two agents attempt to update the same atThe method wrapper for an non-mutually exclu-
tribute. The problem of detecting action conflicts is insive attribute, e.g., colour, first acquires and then re-
tractable in general, and it is up to the simulation develnquishes ownership of the attribute, allowing other
oper to design &IM_AGENT simulation so as to avoid agents running on this or other federates to update the
conflicts. One way to do this is to arrange for each agitribute at this cycle.
tion to check that its preconditions (i.e., the state the ueine :wapper updaterof colour(c, o simtile. upd_p):

environment was in when the action was selected) still i o b e o b el et A dent fior (o).
hold before performing the update and otherwise abort ... reinquish owmership of this attrige = O "™
the action. However, this is not feasible in a distributed .1+ do the local update

setting, since any attribute updates resulting from the cuerime” '

actions of agents simulated by other federates are not

propagated until the er.u_d.of the cycle. We theref_ore 43  Simulation startup
tend the current capabilities efM _AGENT by allowing
attributes to be declaredutually exclusive. A mutually We also need to add some additional initialisation code
exclusive attribute is one which cannot be updated twigehich loads the FOM, federation description and the
in the same cycle. For example, we may wish to requiparameters for this federate, locates or starts an RTI
that the position of an object can only change once ambassador, and createsHirA f eder at e object for

any given cycle. This extension does not solve the rantis federate.

ification problem, it simply provides some additional When asiMm_AGENT federate starts up, it creates in-
tools for a simulation developer to manage inconsistestinces of all the objects and agents that are to be run



locally, and puts them in both the scheduler and simula-
tion object lists. It also notifies the RTI of their creation.
The RTI creates a unique identifier for each object in
the simulation, and allows other federates to “discover”
them. When we get the identifiers back from the RTI,
we set theobj ect i denti fi er slots in the locally
scheduled objects.

Once the federate is initialised, the main schedule
proceduresi mschedul er, is started and begins to
repeatedly execute the main simulation cycle.

r

(€3]

4.4 Extending the scheduler

We define a newsi mschedul er method which
takes anHLA f eder at e object as an argument and
calls the existingSIM_AGENT sensor, agent decision
making and action methods on the appropriate lists: the
simulation object list in the case of sensors and actions,
and the scheduler list for agent decision making. 6

(c) Run the agent’s rulesystem to update the
agent’s internal database and determine
which actions the agent will perform at
this cycle (if any). This may update the
agent’s internal database, e.g., with informa-
tion about the state of the environment at this
cycle or the currently selected action(s) etc.

. Once all the agents have been run on this cycle, the
scheduler processes the message and action queues
for each agent, transfers outgoing messages to the
input message buffers of the recipient(s) for pro-
cessing at the next cycle, and runs the actions to
update the environment and/or the publicly visible
attributes of the agent. This triggers the calls to
RTI .update_attri bute_val ues. We then
wait until the RTI tells us that it is safe to proceed
to the next cycle.

. repeat.

The additional generic code, e.g., the definitions
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of HLAf eder at e andHLA obj ect, extensions to

The main scheduler cycle proceeds as follows:

1. Wait for synchronisation with other federates.

si mschedul er etc. can be loaded as an additional
library. The code which is specific to a particular simu-
lation (essentially the method wrappers) is “boilerplate”
code which can be generated automatically from the

2. At the beginning of each scheduler cycle, we g&OM and information about which classes in the FOM a

4. For each object or agent in the scheduler list:

by discovery all the new objects that have been crégderate publishes and which attributes it subscribes to.
ated by other federates at the last cycle and cre&#ferent federates would therefore generate different
an instance of the appropriasé mobj ect sub- code, depending on which attributes they are interested
class. If other federates have deleted objects, we However, since Pop-11 uses incremental compila-
also have to delete our local proxies. tion, none of this boilerplate code needs to be defined

in advance: it can be generated on the fly at startup.
. We obtain from the RTI all the attribute updates

from the last cycle, and use this information to up-

date the slots of the agents simulated at this fe®@ Summary

erate (e.g., if an agent on another federate moves

a tile simulated on this federate) and the slots #f this paper, we have sketched an approach to dis-
the proxy agents in the simulation object list. s|dributing simulations of agent-based systems using the
update is accomplished using taeot val ues SIM_AGENT toolkit as an example. We showed how the
method, as calling the normal slot updaters woufd-A can be used to distribute an existiagv AGENT

trigger a rebroadcast of the attribute updates to tfnulation with different agents being simulated by dif-
RTI. ferent federates and briefly outlined the changes neces-

sary to thesiIM_AGENT toolkit to allow integration with
theHLA. It turns out that, given certain reasonable as-
sumptions, all necessary code can be generated auto-
(a) Run the agent's sensors on each of the oRratically from the FOM and information about which
jects in the simulation objects list. By consttributes the federate publishes and subscribes to. The
vention, sensor procedures only access thgegration is transparent in the sense that the existing
publicly available data held in the slots of ars;y_acenT code runs unmodified and the agents are
object, updated in step 3. unaware that other parts of the simulation are running

(b) Transfer messages from other agents frofgmotely.

the input message buffer into the agent's Although preliminary, the design study presented
database. above highlights many of the issues that are central to

any distributed simulation of agent-based systems. Fu-

6in the non-distributed implementation OfSIM.AGENT,
si mschedul er is actually a normal procedure, but proce

ture work will implement the presented design and eval-

dures and methods can be freely intermixedoimiecTcLass a Uate thedLA for the simulation of agent based systems,

feature copied froncLOS.

using more complex testbeds. One key problem is the



efficient propagation of updates to the shared envirobegan, B., Fraser, M., Fielding, D., Benford, S., Greenhalgh,
ment. Our proposal currently makes no use ofthe DDM  C. & Herrero, P. (2002), Keeping in touch: Agents
services provided by the RTI. This is an area of current  reporting from collaborative virtual environments)
work (Logan & Theodoropoulos 2001). K. Forbus & M. S. El-Nasr, eds, ‘Artificial Intelligence

Another obvious area for future work igter- and Interactive Entertainment: Papers from the 2002

. . . . AAAI Symposium’, AAAI Press, Menlo Park, CA,
operation, using HLA to integrateSIM_AGENT with )
. . . .. pp. 62-68. Technical Report SS—-02-01.

other simulators. This would allow the investigation o
of different agent architectures and environments usegan, B. & Theodoropoulos, G. (2001), ‘The distributed
ing different simulators in a straightforward way. Ini- Té”é‘élzgozn o{;zul;gzgent systemsProceedings of the
tial investigation suggests that the additional changes (2), 174-186.
to SIM_AGENT required to support inter-operation aré/orse, K. L. & Zyda, M. (2000), On line multicast grouping
relatively straightforward, and the key issue is one of for dynamic data distribution managemeint;Proceed-
specifying interfaces for sensor and action data. We In9S of the 2000 Fall Simulation Interoperability Work-
are currently in the process of developing a set of inter-  SNOP"- Paper No. 00F-SIW-052.

operability guidelines fosIM_AGENT simulations. Pollack, M. E. & Ringuette, M. (1990), Introducing the
tileworld: Experimentally evaluating agent architec-
ture,in ‘National Conference on Artificial Intelligence’,
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