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ABSTRACT In this paper we discuss the distributed simula-
tion of agent-based systems in HLA. Using the SIM AGENT

toolkit and the Tileworld scenario as an example, we present
a design proposal showing how the HLA can be used to dis-
tribute a SIM AGENT simulation with different agents be-
ing simulated by different federates. We outline the changes
necessary to the SIM AGENT toolkit to allow integration
with the HLA, and show that, given certain reasonable as-
sumptions, all necessary code can be generated automati-
cally from the FOM and the object class publications and
subscriptions. The integration is transparent in the sense
that the existing SIM AGENT code runs unmodified and the
agents are unaware that other parts of the simulation are
running remotely.

1 Introduction

An agent can be viewed as a self-contained, concur-
rently executing thread of control that encapsulates
some state and communicates with its environment and
possibly other agents via some sort of message passing.
The environment of an agent is that part of the world or
computational system ‘inhabited’ by the agent. Agents
are embedded in an environment. Theenvironment may
contain other agents whose environments are disjoint
with or only partially overlap with the environment of
a given agent. Agent-based systems offer advantages
when independently developed components must inter-

operate in a heterogeneous environment, e.g. the in-
ternet, and agent-based systems are increasingly being
applied in a wide range of areas including telecommu-
nications, business process modelling, computer games,
control of mobile robots and military simulations.

While agents offer great promise, their adoption has
been hampered by the limitations of current develop-
ment tools and methodologies. Multi-agent systems are
often extremely complex and it can be difficult to for-
mally verify their properties. As a result, design and im-
plementation remains largely experimental, and experi-
mental approaches are likely to remain important for the
foreseeable future. In this context, simulation has a key
role to play in the development of agent-based systems,
allowing the agent designer to learn more about the be-
haviour of a system or to investigate the implications of
alternative agent architectures, and the agent researcher
to probe the relationships between agent architectures,
environments and behaviour. The use of simulation al-
lows a degree of control over experimental conditions
and facilitates the replication of results in a way that is
difficult or impossible with a prototype or fielded sys-
tem, allowing the agent designer or researcher to focus
on key aspects of the system.

Simulation has traditionally played an important role
in agent research and a wide range of simulators and
testbeds have been developed to support the design and
analysis of agent architectures and systems (Durfee &
Montgomery 1989, Pollack & Ringuette 1990, Atkin,
Westbrook, Cohen & Jorstad. 1998, Anderson 2000,
Schattenberg & Uhrmacher 2000). One such simulator
is SIM AGENT, a toolkit to support research in architec-
tures for intelligent, human-like agents (Sloman & Poli



1996).1

However no one testbed is, or can be, appropriate to
all agents and environments. Moreover, even if a suit-
able simulator or testbed can be found for a given prob-
lem, the assumptions made by the simulator can make it
difficult to generalise the results obtained, and demon-
strating that a particular result holds across a range of
agent architectures and environments often requires us-
ing a number of different systems.

Furthermore, the computational requirements of sim-
ulations of many multi-agent systems far exceed the
capabilities of conventional sequential von Neumann
computer systems. Each agent is typically a complex
system in its own right (e.g., with sensing, planning, in-
ference etc. capabilities), requiring considerable com-
putational resources, and many agents may be required
to investigate the behaviour of the system as a whole or
even the behaviour of a single agent. A solution to this
problem is distributed simulation.

The High Level Architecture (HLA), the simulator
interoperability framework developed by the US DoD
DMSO2, can help to address both of the above prob-
lems, as it can allow the interoperability of various sim-
ulators and testbeds which support different agent ar-
chitectures and environments. Moreover, the compo-
nent simulations may be distributed on different ma-
chines to increase the overall performance of the global
simulation. In this paper, we investigate the feasibil-
ity of interfacing SIM AGENT to HLA to support the
distributed simulation of agent-based systems. In sec-
tion 2 we briefly describe theSIM AGENT toolkit and
illustrate its application in a simple Tileworld scenario.
In section 3 we outline how theHLA can be used to
distribute an existingSIM AGENT simulation with dif-
ferent agents being simulated by different federates.
In section 4 we sketch the changes necessary to the
SIM AGENT toolkit to allow integration with theHLA.
It turns out that, given certain reasonable assumptions,
all necessary code can be generated automatically from
the FOM and the object class publications and subscrip-
tions. The integration is transparent in the sense that
the existingSIM AGENT code runs unmodified and the
agents are unaware that other parts of the simulation are
running remotely. We conclude with a brief description
of future work.

2 An overview of SIM AGENT

SIM AGENT is an architecture-neutral toolkit originally
developed to support the exploration of alternative
agent architectures (Sloman & Poli 1996, Sloman &
Logan 1999). It can be used both as a sequential,
centralised, time-driven simulator for multi-agent sys-
tems, e.g., to simulate software agents in an Internet

1See http://www.cs.bham.ac.uk/∼axs/cogaffect/simagent.html
2See http://www.dmso.mil/hla

environment or physical agents and their environment,
and as an agent implementation language, e.g., for
software agents or the controller for a physical robot.
SIM AGENT has been used in a variety of research and
applied projects, including studies of affective and de-
liberative control in simple agent systems (Scheutz &
Logan 2001), agents which report on activities in col-
laborative virtual environments (Logan, Fraser, Field-
ing, Benford, Greenhalgh & Herrero 2002) (which in-
volved integratingSIM AGENT with the MASSIVE-3
VR system), and simulation of tank commanders in mil-
itary training simulations (Baxter & Hepplewhite 1999)
(for this project,SIM AGENT was integrated with an ex-
isting real time military simulation).

In SIM AGENT, an agent consists of a collection of
modules representing the capabilities of the agent, e.g.,
perception, problem-solving, planning, communication
etc. Groups of modules can execute either sequentially
or concurrently and with differing resource limits. Each
module is implemented as a collection of rules in a
high-level rule-based language calledPOPRULEBASE.
However the rule format is very flexible. Both the con-
ditions and actions of rules can invoke arbitrary low-
level capabilities, allowing the construction of hybrid
architectures including, for example, symbolic mecha-
nisms communicating with neural nets and modules im-
plemented in procedural languages. The rulesets which
implement each module, together with any associated
procedural code, constitute therulesystem of an agent.
The toolkit can also be used to simulate the agent’s envi-
ronment.SIM AGENT provides facilities to populate the
agent’s environment with user-defined active and pas-
sive objects (and other agents).

Simulation proceeds in three logical phases: sens-
ing, internal processing and action execution, where
the internal processing may include a variety of logi-
cally concurrent activities, e.g., perceptual processing,
motive generation, planning, decision making, learning
etc. (see Figure 1).

run condition 

Phase Two Phase Three

rules and setup

Phase One
Get new sense

data
actions

Perform Actions
and send 
messages

Figure 1: Logical structure of a simulation cycle

In the first phase each agent’s internal database is up-
dated according to what it senses and any messages sent
at the previous cycle. Within aSIM AGENT simulation,
each object or agent has both externally visible data and
private internal data. The internal data can be thought
of as the agent’s working memory ordatabase. The
database is used to hold the agent’s model of the envi-
ronment, its current goals, plans etc. The internal data
is ‘private’ in the sense that other objects or agents have
no direct access to it. The external data is data which



conceptually would be externally visible to other ob-
jects in the environment, things such as colour, size,
shape etc. For example, if an agent’s sensors are able
to see all objects within a pre-defined distance, the in-
ternal database of the agent would be updated to contain
facts which indicate the visible attributes of all objects
which are closer than the sensor range.

The next phase involves decision making and ac-
tion selection. The contents of the agent’s database
together with the new facts created in phase one are
matched against the conditions of the condition-action
rules which constitute the agent’s rulesystem. It may
be that multiple rule conditions are satisfied, or that the
same rule is satisfied multiple times.SIM AGENT al-
lows the programmer to choose how these rules should
run and in what order. For example a certain program
may require that only the first rule matched runs or that
every satisfied rule should run. It is also possible to
build a list of all the runnable rules and then have a
user-defined procedure order this list so that only cer-
tain rules (e.g., the more important rules) are run or are
run first. These rules will typically cause some inter-
nal and/or external action(s) to be performed or mes-
sage(s) to be sent. Internal actions simply update the
agent’s database and are performed immediately. Ex-
ternal actions change the state of the environment and
are queued for execution in the third phase.

The final phase involves sending the messages and
performing the actions queued in the previous phase.
These external actions will usually cause the object to
enter a new state (e.g., change its location) and hence
sense new data.

The three logical phases are actually implemented as
two scheduler passes for reasons of efficiency. In the
first pass, the scheduler,sim scheduler, processes
the list of agents. For each agent, the scheduler runs its
sensors and rulesystem. Any external actions or mes-
sages generated by the agent in this pass are queued. In
the second pass, the scheduler processes the message
and action queues for each agent, transferring the mes-
sages to the input message buffers of the recipient(s) for
processing at the next cycle, and running the actions to
update the environment and/or the publicly visible at-
tributes of the agent.

2.1 An example: SIM TILEWORLD

In this section we briefly outline the design and
implementation of a simpleSIM AGENT simulation,
SIM TILEWORLD. The Tileworld is a well established
testbed for agents (Pollack & Ringuette 1990). It
consists of an environment consisting of tiles, holes
and obstacles, and an agent whose goal is to score
as many points as possible by pushing tiles to fill in
the holes. The environment is dynamic: tiles holes
and obstacles appear and disappear at rates controlled
by the simulation developer. Tileworld has been used

to study commitment strategies (i.e., when an agent
should abandon its current goal and replan) and in
comparisons of reactive and deliberative agent archi-
tectures. SIM TILEWORLD is an implementation of a
single-agent Tileworld3, which consists of an environ-
ment and one agent (see Figure 2).

Figure 2: A screen shot ofSIM TILEWORLD

SIM AGENT provides a library of classes and meth-
ods for implementing agent simulations. The toolkit
is implemented in Pop-11, an AI programming lan-
guage similar to Lisp, but with an Algol-like syn-
tax. Pop-11 supports object-oriented development
via theOBJECTCLASSlibrary, which provides classes,
methods, multiple inheritance, and generic functions.4

SIM AGENT defines two basic classes,sim object
andsim agent, which can be extended (subclassed)
to give the objects and agents required for a partic-
ular simulation scenario. Thesim object class is
the foundation of allSIM AGENT simulations: it pro-
vides slots (fields or instance variables) for the object’s
name, internal database, sensors, and rulesystem to-
gether with slots which determine how often the ob-
ject will be run at each timestep, how many process-
ing cycles it will be allocated on each pass and so on.
Thesim agent class is a subclass ofsim object
which provides simple message based communication
primitives. SIM AGENT assumes that all the objects
in a simulation will be subclasses ofsim object or
sim agent.

For the SIM TILEWORLD example three subclasses
of sim object were defined to represent holes, tiles
and obstacles, and two subclasses ofsim agent to

3Multi-Agent Tileworld(s) do exist (Ephrati, Pollack & Ur 1995)
4OBJECTCLASSshares many features of the Common Lisp Object

System (CLOS).



represent the environment and the agent. The sub-
classes define additional slots to hold the relevant sim-
ulation attributes, e.g., the position of tiles, holes and
obstacles, the types of tiles, the depth of holes, the tiles
being carried by the agent etc. By convention, external
data is held in slots, while internal data (such as which
hole the agent intends to fill next) is held in the agent’s
database.

The simulation consists of two active objects (the en-
vironment and the agent) and a variable number of pas-
sive objects (the tiles, holes and obstacles). At simu-
lation startup, instances of the environment and agent
classes are created and passed to the scheduler. At each
cycle the scheduler runs the environment agent to up-
date the agent’s environment. InSIM TILEWORLD the
environment agent has a simple rulesystem with no con-
ditions (i.e., it runs every cycle) which causes tiles, ob-
stacles and holes to be created and deleted according to
user-defined probabilities. The scheduler then runs the
agent which perceives the new environment and updates
its internal database with the new sense data. The sen-
sors of an agent are defined by a list of procedures and
methods (conventionallysim sense agentmethods
for the classes involved in the simulation, but any pro-
cedures can be used). Any object in the simulation ob-
jects list which ‘satisfies’ these procedures or methods
(in the sense of being an appropriate method for the ob-
ject class in the case of methods or returning sensor
data in the case of procedures) is considered ‘sensed’
by the agent. The agent then runs all rules which have
their conditions satisfied (no ordering of the rules is per-
formed). Some of the rules may queue external actions
(e.g., moving to or pushing a tile) which are performed
in the second pass of the scheduler at this cycle. This
completes the cycle and the process is repeated.

3 Distributing a SIM AGENT simu-
lation

The High Level Architecture (HLA) allows different
simulations, referred to asfederates, to be combined
into a single larger simulation known as afederation
(DMS 1998). The federates may be written in differ-
ent languages and may run on different machines. A
federation is made up of:

• one or more federates

• a Federation Object Model (FOM)

• the Runtime Infrastructure (RTI)

The FOM defines the types of and the relationship
among the data exchanged between the federates in a
particular federation. The structure of all FOMs is de-
fined by the Object Model Template (OMT) which en-
sures federations can communicate with one another.

The RTI is the middleware software that provides com-
mon services to simulation systems. Communication
between federates and federations is done via the RTI.
The FOM is supplied as data to the RTI at the beginning
of an execution.

There are two distinct ways in whichSIM AGENT

might use the facilities offered by theHLA. The first,
which we call thedistribution of SIM AGENT, involves
usingHLA to distribute the agents and objects compris-
ing a SIM AGENT simulation across a number of fed-
erates. The second, which we callinter-operation, in-
volves usingHLA to integrateSIM AGENT with other
simulators. In this paper we concentrate on the former,
namely distributing an existingSIM AGENT simulation
usingSIM TILEWORLD as an example.

The HLA offers services in six areas, namely Fed-
eration Management, Object Management, Declaration
Management, Ownership Management, Time Manage-
ment, and Data Distribution Management. In the re-
mainder of this section, we outline the role of these ser-
vices in distributing theSIM TILEWORLD simulation.
(We do not consider Federation Management for a dis-
tributedSIM AGENT federation as this is similar to other
HLA federations.)

3.1 Object and Declaration Management

Object and Declaration Management enable the feder-
ates to share data, providing services for registering, up-
dating, deleting, discovering, reflecting and removing
objects as well as subscribing to and publishing data.

Based on theSIM TILEWORLD implementation out-
lined in section 2.1, we chose to split the simulation
into two federates, corresponding to the Tileworld agent
and the Tileworld environment respectively. Figure 3
depicts the FOM for theHLA SIM TILEWORLD exam-
ple. Two main subclasses are defined, namely Agent
and Object, with the Object class having Tiles, Holes
and Obstacles as subclasses.

In the current implementation ofSIM TILEWORLD,
the communication between the agent and the envi-
ronment federates is performed via the objects in the
FOM, via the creation, deletion and updating of at-
tributes. Thus, no interactions are specified in the FOM.
The agent object is included in the FOM as certain at-
tributes of the agent may be accessed by other federates.
The case for this would become clearer in a multi-agent
implementation ofSIM TILEWORLD, where the agents
would need to know the position of other agents in the
environment (for sensing). Table 1 illustrates the corre-
sponding object class publications and subscriptions.

The attributepositionof the Agent class is published
by the Agent federate as this federate updates the posi-
tion of the Agent. The same applies to thecarriedTiles
attribute for the Agent class. Theposition attribute
for the Tile class is published by both the Environment
and the Agent federate. This is because initially, when



TileWorld

position: position

life: Integer

Object

CarriedTiles: TilesList

Agent

ObjectRoot

privelegeToDeleteObject: string

Type: TypeEnum

HoleTile

Type: TypeEnum

Depth: Integer

Obstacle

Figure 3: An example FOM forSIM TILEWORLD

Federate
Object Environment Agent
Agent
privelegeToDeleteObject publish publish
position subscribe publish
carriedTiles subscribe publish
Tile
privelegeToDeleteObject publish publish
position publish publish
life publish subscribe
type publish subscribe
Hole
privelegeToDeleteObject publish publish
position publish subscribe
life publish subscribe
type publish subscribe
depth publish publish
Obstacle
privelegeToDeleteObject publish publish
position publish subscribe
life publish subscribe

Table 1: Object Class Publications and Subscriptions in
Tileworld Federation

the tile is created, the Environment federate will set
the Tile’s position. However, when the Agent federate
picks up the Tile it will start to update thepositionat-
tribute. Similarly, thedepthattribute of the Hole class
will be updated when the agent places a tile in a hole.
Initially, when the hole is created, the Environment fed-
erate will set the depth of the hole. As the Agent fed-
erate places tiles in the hole it will change thedepth
attribute. The other attributes are largely self explana-
tory.

3.2 Ownership Management

HLA rules require federates to own attribute instances
before they can update their value. This ensures that
at any point in time only one federate may update an
attribute and is achieved via ownership Management
services. Ownership Management plays an important
role in a dynamic environment such as Tileworld. In
the single agentSIM TILEWORLD example, the tran-
sition of ownership is quite straightforward. However
it becomes more complicated as more agent federates
are added in the simulation. For instance, in a multi-
agent Tileworld two (or more) agents may try to push
the same tile. In terms of ownership management this
raises important questions. Before an agent federate can
move a tile it must obtain ownership of the tile’sposi-
tion attribute. Once the tile has been moved by this
agent, the second agent’s move should become invalid,
as the tile is no longer at the position at which the agent
initially perceived it.

For other attributes this may not be the case. For ex-
ample, if the tile has a colour attribute that two agents
both wish to change. If the first agent changes the
colour to blue and the second agent changes it to red the
tile would first change to blue and then to red. The fact
that the first agent changes the colour to blue doesn’t
mean the second agent cannot then change the colour
again.

3.3 Time Management

Time Management services in theHLA perform two
main roles, namely, coordinating the advancement of
logical time in federates and controlling delivery of
time-stamped events to prevent federates receiving ’old’
events, i.e., events with logical time less than the feder-
ates current logical time.

SIM AGENT is a centralised, time-driven system
where simulation advances in timesteps, referred to as
cycles. As explained in section 2, at the end of a cycle
a series of actions may change some aspects of the sim-
ulation. These changes are then perceived by all agents
at the beginning of the next cycle. It therefore makes
sense that the Federation should synchronise at the end
(or beginning) or each cycle. This can be achieved
by making the all federates time-regulating and time-
constrained. This ensures that the federates will pro-
ceed in a timestep fashion, alternating between per-
forming their external actions and perceiving changes.

3.4 Data Distribution Management

The aim of Data Distribution Management (DDM) is
to limit the amount of data exchanged between the fed-
erates in the simulation. This is achieved through the
specification of subscription and publishing regions in
routing spaces, with each region implicitly defining an



interconnection pattern between federates, and the as-
signment of multicast groups to these regions. Due
to the complexity of router configuration and the lim-
ited availability of multicast groups, the assignment
of multicast groups is static and is based on a pri-
ori knowledge of the federates’ interconnection pat-
terns (Morse & Zyda 2000). However, as explained
in (Logan & Theodoropoulos 2001), in complex agent-
based systems it is difficult, if at all possible, to deter-
mine an appropriate simulation topology a priori, and
therefore, static interest management schemes are inad-
equate. Various efforts have been and are currently be-
ing undertaken to define alternative dynamic schemes
for Interest Management (Morse & Zyda 2000, Logan
& Theodoropoulos 2001); in (Logan & Theodoropou-
los 2001) an approach which combines dynamic inter-
est management and load balancing for the simulation
of agent-based systems has been introduced.

The sensors used inSIM AGENT can be restricted to
a certain range. Therefore although using DDM would
increase the efficiency of the simulation it is not essen-
tial for the early stages of the integration exercise de-
scribed in this paper. Federates will send information to
one another based on the publish-subscribe information
provided in table 1 and it will be up to the individual
agents to ‘sense’ and filter the relevant information.

4 Extending the SIM AGENT

toolkit

In this section we briefly sketch the extensions nec-
essary to theSIM AGENT toolkit to allow an existing
SIM AGENT simulation to be distributed using theHLA.
We assume that we have an existingSIM AGENT sim-
ulation (e.g.,SIM TILEWORLD) that we want to dis-
tribute by placing disjoint subsets of the objects and
agents comprising the simulation on different federates.
Our aim is to make this distribution transparent to the
SIM AGENT low level scheduler code and agents and
objects comprising the simulation.

The general picture is as follows:

• we extendSIM AGENT to hold additional data
about the federation and the federate in which the
SIM AGENT process is running, e.g., the FOM, the
agents to be simulated by this federate, proxies
for agents simulated by other federates, RTI book-
keeping information etc.;

• we extend the simulation classes so that updates
to publicly visible attributes by agents simulated
by this federate (i.e., updates to public data corre-
sponding to attributes published by this federate)
are propagated to other federates;

• we need to add some code to connect to the RTI
and initialise the federate’s data structures; and

• we have to modify theSIM AGENT scheduler so
that only those agents simulated by this federate
are actually run at each cycle. We also have to
handle object discovery, propagation of object at-
tributes, and synchronisation at each cycle.

SIM AGENT has the ability to make simple calls to func-
tions written in C.SIM AGENT will therefore be inter-
faced with the C++ version of the RTI. Any RTI Am-
bassador methods and Federate Ambassador methods
needed for the implementation will be given appropriate
C wrappers. The idea being all RTI calls can be made
from SIM AGENT as though we have an implementation
of the RTI written in Pop-11.

In what follows, we briefly describe the necessary
changes toSIM AGENT in more detail. In section 4.5
we outline the operation of the modified scheduler over
a single simulation cycle (see Figure 1). It turns out
that the changes to the scheduler are confined to the first
(sensing) and third (action) phases. The second phase
involves only the internal operation of the agent and up-
dates to the agent’s privatedatabase. Such updates are
typically invisible to other agents, and can be ignored
for the purposes of distribution5.

4.1 Representing the federation

At each federate, we split the objects in the simulation
into two lists: thescheduler list and thesimulation ob-
jects list. The scheduler list contains instances of the
standardsim object and sim agent classes and
their subclasses which are being ‘run’ bySIM AGENT

on this federate. The simulation objects list is used for
the sensors and actions of the agents being simulated
by this federate. In what follows, we shall refer to the
objects in the scheduler list as the “agents being sim-
ulated by this federate”, always remembering that this
coverssim objects too. The simulation objects list
contains everything in the scheduler list together with
any objects being simulated by other federates which
this federate knows about (e.g., via object discovery).
Note that a federate may not know about all the objects
in the simulation (and in the limit case, none of the fed-
erates knows about all the objects in the simulation).

We define two new classes,HLA federate and
HLA object. HLA federate contains slots to hold
the relevant data for aSIM AGENT process running on
a particular federate, e.g., the scheduler and simulation
objects lists, the FOM for the federation, a handle to
the local RTI ambassador etc.HLA object holds RTI
bookkeeping information for each object in the sim-
ulation, e.g., the unique RTI identifier for the object
which is shared by all the federates in the simulation.
All instances of the existingSIM AGENT classes (i.e.,
sim object andsim agent and their subclasses)

5We have not considered the distribution of the components of a
single agent across multiple federates.



need to hold this bookkeeping information. We can
accomplish this in a straightforward way by declaring
sim object to be a subclass ofHLA object—in
OBJECTCLASSthere is no root class from which all
other classes descend, and a new class definition can
“adopt” an existing class and its subclasses.

We assume that all the class definitions for the objects
and agents comprising the simulation are available to all
federates, and that all federates can create instances of
these classes to represent agents being simulated by the
federate and as proxies for agents being simulated by
other federates.

4.2 Propagating the effects of actions

As stated in section 2, agents can perform two differ-
ent types of actions: internal actions which update the
agent’s privatedatabase, and external actions which up-
date publicly visible attributes of an object. Internal
actions only affect the state of the agent and are pro-
cessed immediately, since the effects of the action (i.e.,
changes to the contents of the agent’s database or work-
ing memory) typically form part of a larger decision
making process within the agent. However, in the case
of external actions, it is necessary to propagate the up-
date to other federates which subscribe to the attribute.
This involves calls to the RTI to acquire ownership of
the attribute (if it is not currently owned by this fed-
erate) and to do the update. The aim is to make these
additional calls transparent to the Pop-11 code that im-
plements the action.

The situation is complicated by the fact that external
actions are usually queued for execution at the end of
the current cycle. This avoids the agents “seeing” dif-
ferent states of the environment during the first pass of
the scheduler, and means that the order in which agents
are processed by the scheduler doesn’t matter in situa-
tions where two agents attempt to update the same at-
tribute. The problem of detecting action conflicts is in-
tractable in general, and it is up to the simulation devel-
oper to design aSIM AGENT simulation so as to avoid
conflicts. One way to do this is to arrange for each ac-
tion to check that its preconditions (i.e., the state the
environment was in when the action was selected) still
hold before performing the update and otherwise abort
the action. However, this is not feasible in a distributed
setting, since any attribute updates resulting from the
actions of agents simulated by other federates are not
propagated until the end of the cycle. We therefore ex-
tend the current capabilities ofSIM AGENT by allowing
attributes to be declaredmutually exclusive. A mutually
exclusive attribute is one which cannot be updated twice
in the same cycle. For example, we may wish to require
that the position of an object can only change once in
any given cycle. This extension does not solve the ram-
ification problem, it simply provides some additional
tools for a simulation developer to manage inconsistent

updates.
Attributes inSIM AGENT are represented by slot val-

ues. Each slot has two predefined methods, anaccessor
which returns the current value, and anupdater, which
sets the value.OBJECTCLASSprovidesmethod wrap-
pers, methods which extend or even replace the func-
tionality of existing methods. A method wrapper is a
closure around a particular method which can modify
the behaviour of that method. Method wrappers can be
used to “intercept” calls to the slot updater methods and
propagate the new value to other federates by making
the appropriate RTI calls.

For each attribute of each class in the FOM that is
published by this federate, we define a method wrapper
for the slot updater, e.g., the method wrapper for the
position slot of the tile object might look like:

define :wrapper updaterof position(p, o:sim_tile, upd_p);
;;; acquire ownership of this attribute
;;; call RTI_update_attribute_values(HLA_identifier(o),

["position", p], time)
;;; do the local update
upd_p(p, o);

enddefine;

Note that ownership is acquired but not released by
the method wrapper. Position is a mutually exclusive
attribute, since one agent changing the position of a
tile violates the precondition for any other action (by
the same or another agent) which attempts to move the
tile. If two agents running on different federates try to
move a given tile at the same cycle, whichever agent’s
action is processed first will acquire ownership of the
tile and succeed, while the other agent’s action will be
denied ownership and fail. (Two agents running on the
same federate could update the attribute, but in this case
we can use checks on the preconditions of the actions,
since the updates are mirrored locally.) At the end of
the cycle, when the actions of all the agents have been
processed, the scheduler relinquishes ownership of any
mutually exclusive attributes acquired by the federate at
the current cycle.

The method wrapper for an non-mutually exclu-
sive attribute, e.g., colour, first acquires and then re-
linquishes ownership of the attribute, allowing other
agents running on this or other federates to update the
attribute at this cycle.

define :wrapper updaterof colour(c, o:sim_tile, upd_p);
;;; acquire ownership of this attribute
;;; call RTI_update_attribute_values(HLA_identifier(o),

["colour", c], time);
;;; relinquish ownwership of this attribute

;;; do the local update
upd_p(p, o);

enddefine;

4.3 Simulation startup

We also need to add some additional initialisation code
which loads the FOM, federation description and the
parameters for this federate, locates or starts an RTI
ambassador, and creates anHLA federate object for
this federate.

When aSIM AGENT federate starts up, it creates in-
stances of all the objects and agents that are to be run



locally, and puts them in both the scheduler and simula-
tion object lists. It also notifies the RTI of their creation.
The RTI creates a unique identifier for each object in
the simulation, and allows other federates to “discover”
them. When we get the identifiers back from the RTI,
we set theobject identifier slots in the locally
scheduled objects.

Once the federate is initialised, the main scheduler
procedure,sim scheduler, is started and begins to
repeatedly execute the main simulation cycle.

4.4 Extending the scheduler

We define a newsim scheduler method which
takes anHLA federate object as an argument and
calls the existingSIM AGENT sensor, agent decision
making and action methods on the appropriate lists: the
simulation object list in the case of sensors and actions,
and the scheduler list for agent decision making.6

4.5 A cycle of SIM AGENT in HLA

The main scheduler cycle proceeds as follows:

1. Wait for synchronisation with other federates.

2. At the beginning of each scheduler cycle, we get
by discovery all the new objects that have been cre-
ated by other federates at the last cycle and create
an instance of the appropriatesim object sub-
class. If other federates have deleted objects, we
also have to delete our local proxies.

3. We obtain from the RTI all the attribute updates
from the last cycle, and use this information to up-
date the slots of the agents simulated at this fed-
erate (e.g., if an agent on another federate moves
a tile simulated on this federate) and the slots of
the proxy agents in the simulation object list. Slot
update is accomplished using theslot values
method, as calling the normal slot updaters would
trigger a rebroadcast of the attribute updates to the
RTI.

4. For each object or agent in the scheduler list:

(a) Run the agent’s sensors on each of the ob-
jects in the simulation objects list. By con-
vention, sensor procedures only access the
publicly available data held in the slots of an
object, updated in step 3.

(b) Transfer messages from other agents from
the input message buffer into the agent’s
database.

6In the non-distributed implementation ofSIM AGENT,
sim scheduler is actually a normal procedure, but proce-
dures and methods can be freely intermixed inOBJECTCLASS, a
feature copied fromCLOS.

(c) Run the agent’s rulesystem to update the
agent’s internal database and determine
which actions the agent will perform at
this cycle (if any). This may update the
agent’s internal database, e.g., with informa-
tion about the state of the environment at this
cycle or the currently selected action(s) etc.

5. Once all the agents have been run on this cycle, the
scheduler processes the message and action queues
for each agent, transfers outgoing messages to the
input message buffers of the recipient(s) for pro-
cessing at the next cycle, and runs the actions to
update the environment and/or the publicly visible
attributes of the agent. This triggers the calls to
RTI update attribute values. We then
wait until the RTI tells us that it is safe to proceed
to the next cycle.

6. repeat.

The additional generic code, e.g., the definitions
of HLA federate andHLA object, extensions to
sim scheduler etc. can be loaded as an additional
library. The code which is specific to a particular simu-
lation (essentially the method wrappers) is “boilerplate”
code which can be generated automatically from the
FOM and information about which classes in the FOM a
federate publishes and which attributes it subscribes to.
Different federates would therefore generate different
code, depending on which attributes they are interested
in. However, since Pop-11 uses incremental compila-
tion, none of this boilerplate code needs to be defined
in advance: it can be generated on the fly at startup.

5 Summary

In this paper, we have sketched an approach to dis-
tributing simulations of agent-based systems using the
SIM AGENT toolkit as an example. We showed how the
HLA can be used to distribute an existingSIM AGENT

simulation with different agents being simulated by dif-
ferent federates and briefly outlined the changes neces-
sary to theSIM AGENT toolkit to allow integration with
the HLA. It turns out that, given certain reasonable as-
sumptions, all necessary code can be generated auto-
matically from the FOM and information about which
attributes the federate publishes and subscribes to. The
integration is transparent in the sense that the existing
SIM AGENT code runs unmodified and the agents are
unaware that other parts of the simulation are running
remotely.

Although preliminary, the design study presented
above highlights many of the issues that are central to
any distributed simulation of agent-based systems. Fu-
ture work will implement the presented design and eval-
uate theHLA for the simulation of agent based systems,
using more complex testbeds. One key problem is the



efficient propagation of updates to the shared environ-
ment. Our proposal currently makes no use of the DDM
services provided by the RTI. This is an area of current
work (Logan & Theodoropoulos 2001).

Another obvious area for future work isinter-
operation, using HLA to integrateSIM AGENT with
other simulators. This would allow the investigation
of different agent architectures and environments us-
ing different simulators in a straightforward way. Ini-
tial investigation suggests that the additional changes
to SIM AGENT required to support inter-operation are
relatively straightforward, and the key issue is one of
specifying interfaces for sensor and action data. We
are currently in the process of developing a set of inter-
operability guidelines forSIM AGENT simulations.
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